Page 122 - Demo
P. 122


                                    %u062c%u0645%u064a%u0639 %u0627%u0644%u062d%u0642%u0648%u0642 %u0645%u062d%u0641%u0648%u0638%u0629 %u0640 %u0627%u0625%u0644%u0639%u062a%u062f%u0627%u0621 %u0639%u0649%u0644 %u062d%u0642 %u0627%u0645%u0644%u0624%u0644%u0641 %u0628%u0627%u0644%u0646%u0633%u062e %u0623%u0648 %u0627%u0644%u0637%u0628%u0627%u0639%u0629 %u064a%u0639%u0631%u0636 %u0641%u0627%u0639%u0644%u0647 %u0644%u0644%u0645%u0633%u0627%u0626%u0644%u0629 %u0627%u0644%u0642%u0627%u0646%u0648%u0646%u064a%u0629122Objects are often linked together in various ways . Massive links can be used to cluster objects: SimRank, LinkClus . II. Partitioning MethodsThe simplest and most fundamental version of cluster analysis is partitioning, which organizes the objects of a set into several exclusive groups or clusters. To keep the problem specification concise, we can assume that the number of clusters is given as background knowledge. This parameter is the starting point for partitioning methods. Formally, given a data set, D, of n objects, and k, the number of clusters to form, a partitioning algorithm organizes the objects into k partitions (k %u2264 n), where each partition represents a cluster. The clusters are formed to optimize an objective partitioning criterion, such as a dissimilarity function based on distance, so that the objects within a cluster are %u201csimilar%u201d to one another and %u201cdissimilar%u201d to objects in other clusters in terms of the data set attributes . the sum of squared distances is minimized (where ci is the centroid or medoid of cluster Ci) E= ik=1 p Ci (d(p,ci ))2 The K-Means Clustering Method (a centroid-Based Technique): Given k, the k-means algorithm is implemented in four steps :-1- Partition objects into k nonempty subsets 2- Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster) 
                                
   116   117   118   119   120   121   122   123   124   125   126