Page 33 - Demo
P. 33


                                    %u062c%u0645%u064a%u0639 %u0627%u0644%u062d%u0642%u0648%u0642 %u0645%u062d%u0641%u0648%u0638%u0629 %u0640 %u0627%u0625%u0644%u0639%u062a%u062f%u0627%u0621 %u0639%u0649%u0644 %u062d%u0642 %u0627%u0645%u0644%u0624%u0644%u0641 %u0628%u0627%u0644%u0646%u0633%u062e %u0623%u0648 %u0627%u0644%u0637%u0628%u0627%u0639%u0629 %u064a%u0639%u0631%u0636 %u0641%u0627%u0639%u0644%u0647 %u0644%u0644%u0645%u0633%u0627%u0626%u0644%u0629 %u0627%u0644%u0642%u0627%u0646%u0648%u0646%u064a%u062933Distance measure for symmetric binary variables: Distance measure for asymmetric binary variables: Jaccard coefficient (similarity measure for asymmetric binary variables): Note: Jaccard coefficient is the same as %u201ccoherence%u201d: Dissimilarity between Binary Variables: One approach involves computing a dissimilarity matrix from the given binary data. If all binary attributes are thought of as having the same weight, we have the 2 %u00d7 2 contingency table Example Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4Jack M Y N P N N NMary F Y N P N P NJim M Y P N N N NGender is a symmetric attribute,The remaining attributes are asymmetric binary Let the values Y and P be 1, and the value N 0 d( jack,mary) = = 0.33 d( jack, jim) == 0.67d( jim,mary) == 0.75
                                
   27   28   29   30   31   32   33   34   35   36   37